RFID-based access control with a disinfectant booth is a security system that uses radio frequency identification (RFID) technology to control access to a building or room, while also disinfecting people who enter. RFID tags are small, electronic devices that can be attached to people’s clothing or carried on their person. When an RFID tag passes through an RFID reader, the reader can identify the tag and the person carrying it.

In this project design, RFID-Based Access Control with Disinfectant Booth, we design and construct model of an RFID based access control booth that can be placed at the entrance of a door. It will give only people with the permitted RFID card access to pass and once these people enter the model booth, it will activate the spraying of a disinfectant fog that will sanitize the people. For example, this RFID-based access control system could be used to track employee attendance or to track patients in a hospital.

A disinfectant booth is a device that sprays people with disinfectant as they pass through it. This can help to prevent the spread of diseases such as COVID-19. An RFID-based access control system with a disinfectant booth can be used to ensure that only authorized people enter a building or room, and that those people are disinfected before they enter. This can help to improve security and reduce the risk of spreading diseases.
Here are some of the benefits of using an RFID-based access control system with a disinfectant booth
- Improved security: RFID-based access control systems can help to improve security by preventing unauthorized people from entering a building or room.
- Reduced risk of spreading diseases: Disinfectant booths can help to reduce the risk of spreading diseases by spraying people with disinfectant as they pass through.
- Increased efficiency: RFID-based access control systems can help to increase efficiency by automating the process of granting access to people.
- Improved data collection: RFID-based access control systems can be used to collect data about people’s movements and activities. This data can be used to improve security, efficiency, and decision-making.
How to Design An RFID-Based Access Control with Disinfectant Booth
The Components Needed
Components | Quantity |
---|---|
Cubicle booth of suitable size | 1 |
L298N Module | 1 |
stepper motor | 1 |
Double Channel Relay module | 1 |
12V DC Power Supply | 1 |
220V AC pump | 1 |
900W Fogging Heater | 1 |
Threaded 40cm Rod | 1 |
RFID module MFRC522 | 1 |
Arduino Mega Dev Board | 1 |
1602 LCD module | 1 |
RFID tags or Debit Cards | 4 |
3×6 inch box | 1 |
LCD connector Wire | 1 |
miscellaneous | 6 |
Read
- How to Design Fire Detection And Video Surveillance Project
- IoT Based Carbon Monoxide and Carbon Dioxide Monitoring Device
- IoT Generator Monitoring Using Arduino and RemoteXY
RFID-Based Access Control With Disinfectant Booth: The Schematic Diagram
Explanation of Circuit Diagram
The circuit diagram shown above used the Arduino Mega board as the brain of the project design. The Arduino mega board controls the 2 channel relays from an IO pin. One of the relays is needed to pump disinfectant liquid when the fog heater is hot enough the other is needed to control the fog heater from excess heat and damage. The Fog heater comes with a thermostat that we can use to cut off AC voltage supply to the fog heater when it is hot enough.

We used the L298N motor driver module that is made up A4988 IC to control the stepper motor to slide the door forward to ensure closing of the booth model door and backwards to simulate opening of the door. This action would be made possible by the thread roll machine system that is being controlled by the stepper motor.
The Arduino Sketch for The Project Design
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | #include <Arduino.h> #include "BasicStepperDriver.h" #include <EEPROM.h> // We are going to read and write PICC's UIDs from/to EEPROM #include <SPI.h> // RC522 Module uses SPI protocol #include <MFRC522.h> // Library for Mifare RC522 Devices #include "max6675.h" //#include <Servo.h> #include <LiquidCrystal.h> //include the LCD lib //declear what LCD pins u are sending data const int rs = 15, en = 14, d4 = 13, d5 = 12, d6 = 11, d7 = 10; LiquidCrystal lcd(rs, en, d4, d5, d6, d7); // Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step #define MOTOR_STEPS 200 #define RPM 260 // Since microstepping is set externally, make sure this matches the selected mode // If it doesn't, the motor will move at a different RPM than chosen // 1=full step, 2=half step etc. #define MICROSTEPS 1 // All the wires needed for full functionality #define entry_DIR 2 #define entry_STEP 3 #define entry_open 4 #define entry_close 5 #define exit_DIR 6 #define exit_STEP 7 #define exit_open 8 #define exit_close 9 int thermoDO = 32; int thermoCS = 33; int thermoCLK = 34; //define the temp boundries float lowerBoundry = 160.00; float higherBoundry = 200.00; //define relays const int pump_relay = 30; const int element_relay = 31; //define motion sensor pin const int motion_pin = 48; //define lcd backlight pin const int lcd_pin = 47; //define some variables to store data used in the program float temp; int On = LOW; // Active Low relay used, LOW will mean ON. int Off = HIGH; // Active low relay used. // Create MFRC522 instance. #define SS_PIN 53 #define RST_PIN 49 MFRC522 mfrc522(SS_PIN, RST_PIN); MAX6675 thermocouple(thermoCLK, thermoCS, thermoDO); bool programMode = false ; // initialize programming mode to false uint8_t successRead; // Variable integer to keep if we have Successful Read from Reader byte storedCard[4]; // Stores an ID read from EEPROM byte readCard[4]; // Stores scanned ID read from RFID Module byte masterCard[4]; // Stores master card's ID read from EEPROM // 2-wire basic config, microstepping is hardwired on the driver BasicStepperDriver entry_door(MOTOR_STEPS, entry_DIR, entry_STEP); BasicStepperDriver exit_door(MOTOR_STEPS, exit_DIR, exit_STEP); bool motion(){ if (digitalRead(motion_pin) == HIGH){ return true ; } else { return false ;} } void lcd_light( int state){ digitalWrite(lcd_pin, state); } bool open_entry(){ while (1){ entry_door.rotate(360); Serial.println( "Opening Entry Door.." ); lcd.setCursor(0, 1); lcd.print( "Opening Entry...." ); if (digitalRead(entry_open) == LOW){ entry_door.stop(); Serial.println( "Door Stopped" ); return true ; } } } bool open_exit(){ while (1){ exit_door.rotate(360); Serial.println( "Opening Exit Door.." ); lcd.setCursor(0, 1); lcd.print( "Opening Exit...." ); if (digitalRead(exit_open) == LOW){ exit_door.stop(); Serial.println( "Door Stopped" ); return true ; } } } bool close_entry(){ while (1){ entry_door.rotate(-360); Serial.println( "Closing Entry Door.." ); lcd.setCursor(0, 1); lcd.print( "Closing Entry..." ); if (digitalRead(entry_close) == LOW){ entry_door.stop(); Serial.println( "Door Stopped" ); return true ; } } } bool close_exit(){ while (1){ exit_door.rotate(-360); Serial.println( "Closing Exit Door.." ); lcd.setCursor(0, 1); lcd.print( "Closing Exit...." ); if (digitalRead(exit_close) == LOW){ exit_door.stop(); Serial.println( "Door Stopped" ); return true ; } } } void grant_access(){ Serial.println( "Access Granted, wait for door to open" ); if (open_entry() == true ){ Serial.println( "Door Open Please Enter" ); delay(1500); } if (close_entry() == true ){ Serial.println( "Disinfecting....." ); Pump(On); delay(1500); Pump(Off); delay(1000); } if (open_exit() == true ){ Serial.println( "Door Open please exit" ); delay(1500); } if (close_exit() == true ){ Serial.println( "all good" ); } } void setup() { //define the mode of the pins, either input or output pinMode(entry_open, INPUT_PULLUP); pinMode(entry_close, INPUT_PULLUP); pinMode(exit_open, INPUT_PULLUP); pinMode(exit_close, INPUT_PULLUP); pinMode(exit_close, INPUT_PULLUP); pinMode(motion_pin, INPUT_PULLUP); pinMode(lcd_pin, OUTPUT); pinMode(pump_relay, OUTPUT); pinMode(element_relay, OUTPUT); entry_door.begin(RPM, MICROSTEPS); exit_door.begin(RPM, MICROSTEPS); Serial.begin(9600); // Initiate SPI bus SPI.begin(); // Initiate MFRC522 mfrc522.PCD_Init(); //begin the LCD lcd.begin(16, 2); //turn all pins off at initial.(Active low relay, so HIGH means off) Pump(Off); Heater(Off); Serial.println(F( "Smartech Access Control v0.2" )); // For debugging purposes ShowReaderDetails(); // Show details of PCD - MFRC522 Card Reader details lcd_light(HIGH); //Print welcome message lcd.println( " Ayoola's NFC: " ); lcd.setCursor(0, 1); lcd.println( "Sanitizing Boot " ); delay(3000); Serial.println( "Auto Disinfectant Booth" ); //close_entry(); temp = thermocouple.readCelsius(); lcd.clear(); int i = 0; while (temp < lowerBoundry+20){ temp = thermocouple.readCelsius(); Serial.print( "Heatig up, Please be patient! " ); lcd.setCursor(0, 0); lcd.print( " Heating Up " ); lcd.setCursor(i, 1); lcd.print( "*" ); Serial.print(temp); Serial.println( "'C" ); Heater(On); delay(2000); i++; if (i >= 15){ i = 0; lcd.clear(); } } Heater(Off); if (EEPROM.read(1) != 123) { Serial.println(F( "No Master Card Defined" )); Serial.println(F( "Scan A PICC to Define as Master Card" )); lcd.setCursor(0, 0); lcd.println( "No Master CARD.! " ); delay(1500); lcd.setCursor(0, 1); lcd.println( "Swipe a CARD to:" ); delay(2000); lcd.setCursor(0, 0); lcd.println( "Swipe a CARD to:" ); delay(1500); lcd.setCursor(0, 1); lcd.println( " Save as Master!" ); delay(500); do { successRead = getID(); // sets successRead to 1 when we get read from reader otherwise 0 } while (!successRead); // Program will not go further while you not get a successful read for ( uint8_t j = 0; j < 4; j++ ) { // Loop 4 times EEPROM.write( 2 + j, readCard[j] ); // Write scanned PICC's UID to EEPROM, start from address 3 } EEPROM.write(1, 123); // Write to EEPROM we defined Master Card. //EEPROM.write(0, 1); // Write to EEPROM to save card count. Serial.println(F( "Master Card Defined" )); lcd.clear(); lcd.setCursor(0, 0); lcd.println( "Master Tag Saved " ); delay(1500); lcd.setCursor(0, 1); lcd.println( "Keep it Securely! " ); delay(2500); } Serial.println(F( "-------------------" )); Serial.println(F( "Master Card's UID" )); for ( uint8_t i = 0; i < 4; i++ ) { // Read Master Card's UID from EEPROM masterCard[i] = EEPROM.read(2 + i); // Write it to masterCard Serial.print(masterCard[i], HEX); } Serial.println( "" ); Serial.println(F( "-------------------" )); Serial.println(F( "Everything is ready" )); Serial.println(F( "Waiting PICCs to be scanned" )); lcd.clear(); lcd.setCursor(0, 0); lcd.println( "Device is Ready " ); delay(2000); lcd.clear(); } void loop() { do { successRead = getID(); // sets successRead to 1 when we get read from reader otherwise 0 lcd.setCursor(0, 0); lcd.print( "Swipe a Tag to:" ); lcd.setCursor(0, 1); lcd.print( " gain access " ); temp = temp = thermocouple.readCelsius(); Serial.print( "Temp = " ); Serial.print(temp); Serial.println( "'C " ); // For the MAX6675 to update, you must delay AT LEAST 250ms between reads! delay(250); if (temp <= lowerBoundry){ Heater(On); Serial.println( "Heating up........." ); } else if (temp >= higherBoundry){ Heater(Off); } } while (!successRead); if (successRead){ lcd.clear(); lcd.setCursor(0,0); lcd.print( "Checking card... " ); delay(2000); if ( isMaster(readCard)) { // If scanned card's ID matches Master Card's ID - enter program mode Serial.println(F( "Welcome Master - Your Fare is free!" )); uint8_t count = EEPROM.read(0); // Read the first Byte of EEPROM that Serial.print(F( "I have " )); // stores the number of ID's in EEPROM Serial.print(count); Serial.print(F( " record(s) on EEPROM" )); Serial.println( "" ); lcd.setCursor(0,1); lcd.print( " Welcome Master " ); delay(2000); //card = false; do { successRead = getID(); // sets successRead to 1 when we get read from reader otherwise 0 lcd.setCursor(0,0); lcd.print( "Add New a Tag or " ); //delay(1000); lcd.setCursor(0,1); lcd.print( " Delete old Tag " ); Serial.println( "Place a Card to allow register or a known card to delete" ); //delay(1000); } while (!successRead); //the program will not go further while you are not getting a successful read if ( isMaster(readCard)) { // If scanned card's ID matches Master Card's ID - enter program mode lcd.setCursor(0,0); lcd.print( "Tag Registration " ); lcd.setCursor(0,1); lcd.print( "Exited by Master " ); delay(3000); //card = true; return ; } else if ( findID(readCard) ) { // If card found, see if the card is in the EEPROM Serial.println(F( "Tag was saved before, not a new tag" )); deleteID(readCard); lcd.setCursor(0,0); lcd.print( " Tag Existed " ); lcd.setCursor(0,1); lcd.print( "Deleting Tag...... " ); deleteID(readCard); delay(3000); } else if ( !findID(readCard)){ // If scanned card is not known add it Serial.println(F( "I do not know this PICC, adding..." )); lcd.setCursor(0,0); lcd.print( " Please wait " ); lcd.setCursor(0,1); lcd.print( " Saving Tag......." ); delay(2000); writeID(readCard); if (writeID(readCard)){ Serial.println(F( "-----------------------------" )); Serial.println(F( "Scan a PICC to ADD or REMOVE to EEPROM" )); lcd.setCursor(0,1); lcd.print( " Tag saved OK! " ); delay(3000); } else { lcd.setCursor(0,0); lcd.print( "Error Saving Tag" ); lcd.setCursor(0,1); lcd.print( "Pls. Try Again.. " ); delay(5000); return ; } } } else if ( findID(readCard) ) { // check if the card is in the EEPROM Serial.println(F( "Welcome Passenger" )); lcd.setCursor(0,0); lcd.print( "Valid Tag Swiped" ); lcd.setCursor(0,1); delay(2000); lcd.print( "*Access Granted*** " ); delay(3000); //granted(2000); grant_access(); } else if ( !findID(readCard) ){ // If scanned card is not known dont allow Serial.println(F( "I do not know this Tag, no entry" )); lcd.setCursor(0,0); lcd.print( " Access Denied! " ); lcd.setCursor(0,1); lcd.print( "**Unknown Tag!** " ); delay(2000); lcd.print( "Buy a Legit Tag. " ); delay(3000); } } } void Pump( int state){ digitalWrite(pump_relay, state); } void Heater( int state){ digitalWrite(element_relay, state); } ///////////////////////////////////////// Get PICC's UID /////////////////////////////////// uint8_t getID() { // Getting ready for Reading PICCs if ( ! mfrc522.PICC_IsNewCardPresent()) { //If a new PICC placed to RFID reader continue return 0; } if ( ! mfrc522.PICC_ReadCardSerial()) { //Since a PICC placed get Serial and continue return 0; } // There are Mifare PICCs which have 4 byte or 7 byte UID care if you use 7 byte PICC // I think we should assume every PICC as they have 4 byte UID // Until we support 7 byte PICCs Serial.println(F( "Scanned PICC's UID:" )); for ( uint8_t i = 0; i < 4; i++) { // readCard[i] = mfrc522.uid.uidByte[i]; Serial.print(readCard[i], HEX); } Serial.println( "" ); mfrc522.PICC_HaltA(); // Stop reading return 1; } void ShowReaderDetails() { // Get the MFRC522 software version byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg); Serial.print(F( "MFRC522 Software Version: 0x" )); Serial.print(v, HEX); if (v == 0x91) Serial.print(F( " = v1.0" )); else if (v == 0x92) Serial.print(F( " = v2.0" )); else Serial.print(F( " (unknown),probably a chinese clone?" )); Serial.println( "" ); // When 0x00 or 0xFF is returned, communication probably failed if ((v == 0x00) || (v == 0xFF)) { Serial.println(F( "WARNING: Communication failure, is the MFRC522 properly connected?" )); Serial.println(F( "SYSTEM HALTED: Check connections." )); // Turn on red LED while ( true ); // do not go further } } //////////////////////////////////////// Read an ID from EEPROM ////////////////////////////// void readID( uint8_t number ) { uint8_t start = (number * 4 ) + 2; // Figure out starting position for ( uint8_t i = 0; i < 4; i++ ) { // Loop 4 times to get the 4 Bytes storedCard[i] = EEPROM.read(start + i); // Assign values read from EEPROM to array } } ///////////////////////////////////////// Add ID to EEPROM /////////////////////////////////// bool writeID( byte a[] ) { if ( !findID( a ) ) { // Before we write to the EEPROM, check to see if we have seen this card before! uint8_t num = EEPROM.read(0); // Get the numer of used spaces, position 0 stores the number of ID cards uint8_t start = ( num * 4 ) + 6; // Figure out where the next slot starts for ( uint8_t j = 0; j < 4; j++ ) { // Loop 4 times EEPROM.write( start + j, a[j] ); // Write the array values to EEPROM in the right position } //successWrite(); num++; // Increment the counter by one EEPROM.write( 0, num ); // Write the new count to the counter Serial.println(F( "Succesfully added ID record to EEPROM" )); return true ; } else { //failedWrite(); Serial.println(F( "Failed! There is something wrong with ID or bad EEPROM" )); return false ; } } ///////////////////////////////////////// Remove ID from EEPROM /////////////////////////////////// void deleteID( byte a[] ) { if ( !findID( a ) ) { // Before we delete from the EEPROM, check to see if we have this card! //failedWrite(); // If not Serial.println(F( "Failed! There is something wrong with ID or bad EEPROM" )); } else { uint8_t num = EEPROM.read(0); // Get the numer of used spaces, position 0 stores the number of ID cards uint8_t slot; // Figure out the slot number of the card uint8_t start; // = ( num * 4 ) + 6; // Figure out where the next slot starts uint8_t looping; // The number of times the loop repeats uint8_t j; uint8_t count = EEPROM.read(0); // Read the first Byte of EEPROM that stores number of cards slot = findIDSLOT( a ); // Figure out the slot number of the card to delete start = (slot * 4) + 2; looping = ((num - slot) * 4); num--; // Decrement the counter by one EEPROM.write( 0, num ); // Write the new count to the counter for ( j = 0; j < looping; j++ ) { // Loop the card shift times EEPROM.write( start + j, EEPROM.read(start + 4 + j)); // Shift the array values to 4 places earlier in the EEPROM } for ( uint8_t k = 0; k < 4; k++ ) { // Shifting loop EEPROM.write( start + j + k, 0); } //successDelete(); Serial.println(F( "Succesfully removed ID record from EEPROM" )); } } ///////////////////////////////////////// Check Bytes /////////////////////////////////// bool checkTwo ( byte a[], byte b[] ) { for ( uint8_t k = 0; k < 4; k++ ) { // Loop 4 times if ( a[k] != b[k] ) { // IF a != b then false, because: one fails, all fail return false ; } } return true ; } ///////////////////////////////////////// Find Slot /////////////////////////////////// uint8_t findIDSLOT( byte find[] ) { uint8_t count = EEPROM.read(0); // Read the first Byte of EEPROM that for ( uint8_t i = 1; i <= count; i++ ) { // Loop once for each EEPROM entry readID(i); // Read an ID from EEPROM, it is stored in storedCard[4] if ( checkTwo( find, storedCard ) ) { // Check to see if the storedCard read from EEPROM // is the same as the find[] ID card passed return i; // The slot number of the card } } } ///////////////////////////////////////// Find ID From EEPROM /////////////////////////////////// bool findID( byte find[] ) { uint8_t count = EEPROM.read(0); // Read the first Byte of EEPROM that for ( uint8_t i = 1; i < count; i++ ) { // Loop once for each EEPROM entry readID(i); // Read an ID from EEPROM, it is stored in storedCard[4] if ( checkTwo( find, storedCard ) ) { // Check to see if the storedCard read from EEPROM return true ; } else { // If not, return false } } return false ; } ////////////////////// Check readCard IF is masterCard /////////////////////////////////// // Check to see if the ID passed is the master programing card bool isMaster( byte test[] ) { return checkTwo(test, masterCard); } |
RFID-based Access Control With Disinfectant Booth: Explanation of Arduino Sketch
The Arduino source code written above has comments lines to explain what each line of code does. If you happen to find any problem understanding what it does, leave us a comment below for assistance.

You can download the library for the MFRC522 RFID module from Github website. The rest of the libraries can be downloaded from searching them on Google search engine. The source makes use of the the thermocouple max6675 library too.
Results and Testing

The project was programmed to work with debit card with NFC capabilities or RFID cards. This choice was made so that people or staff could use their debit cards to gain access to the facility once it is programed into the system. When powered on, the system design LCD comes on and it tells user to swipe their card the design after greeting them and displaying the name of the project design.

As shown above, when the RFID card is swiped across the design, the LCD will display it is checking the card if it is in the database of the project design.

The LCD will display “Access Denied” if the card is not found to be in the DB. This will not open the door for the user after this. The user would be told that the card is an “UNKNOWN TAG”. This means the user would have to approach the administrator or admin who has a master card that he can use to assign the user an ID into the DB.

However, if the card is found in the database, the LCD will display “VALID CARD SWIPED”. The display on the LCD would change to afterwards to give us “ACCESS GRANTED”.

This granted access into the disinfectant booth will activate the opening on the booth door. Since the design was made with thread roll machine, the stepper motor would start spinning and the door would take some time to open fully.

The door of the booth opens and once, the door closes, the relay would be triggered. This will make the AC pump to pump disinfectant fluid through the fog heater. And this will be converted to got fumes that will clean the people inside the cubicle or booth.
Conclusion
The design of the RFID-based access control with disinfectant booth project design works as expected. We have been able to allow access through the entrance booth model and disinfect people inside the booth using fog disinfectants. We would like to know if you followed this blog post to achieve the same results. Drop a review in the comment section below.