blog

Rocks May Serve as Solar Energy Collectors In The future.

There’s a chance about the future solar energy that the sun and other low-tech elements like pebbles will be used to create the next generation of sustainable energy technologies. Which is quite interesting, imagine, rocks as solar energy collectors.

By storing solar heat using a novel technique called concentrated solar power, food can be dried or energy can be produced. Some soapstone and granite samples from Tanzania, according to a team publishing in ACS Omega, have high energy densities and are stable even at high temperatures, making them ideal for storing this solar heat.

future solar energy

When not in use, energy is frequently stored in huge batteries, but these can be pricey and consume a lot of resources to produce. Thermal energy storage (TES), a less sophisticated option, stores energy as heat in a liquid or solid, such as water, oil, or rock. The heat can drive a generator to generate electricity when it is released. Rocks like granite and soapstone, which are widespread and specially created under great temperatures, may be suitable TES materials.

However, their properties can vary greatly based on where in the world they were formed, possibly making some samples better than others. In Tanzania, the Craton and Usagaran geological belts meet, and both contain granite and soapstone. So, Lilian Deusdedit Kakoko, Yusufu Abeid Chande Jande and Thomas Kivevele from Nelson Mandela African Institution of Science and Technology and Ardhi University wanted to investigate the properties of soapstone and granite found in each of these belts.

The team collected several rock samples from the belts and analyzed them. The granite samples contained a large amount of silicon oxides, which added strength. However, the Craton granite contained other compounds, including muscovite, which are susceptible to dehydration and could make the rock unstable at high temperatures.

The soapstone contained magnesisite, which gave it a high density and heat capacity. Both soapstone samples and the Usagaran granite remained solid at temperatures over 1800 degrees Fahrenheit, but the Craton granite crumbled. Furthermore, the granite proved less likely to release its heat-stored energy than the soapstone. All things considered, the Craton soapstone performed the best as a TES, effectively absorbing, storing, and transmitting heat while keeping good chemical stability and mechanical strength.

The other rocks, however, would be more appropriate for a TES use requiring less energy, like a sun dryer. These samples, according to the researchers, show good potential as a sustainable energy storage material, even if more testing is required.

Conclusion

Having a breakthrough of making rocks as solar energy collectors would mean a huge deal and so much possibilities for the future generations. Let us know your thoughts on these in the comment sections. Thank you.

Read More

smartechlabs

Recent Posts

IoT Smart Home With Bluetooth Voice Control & Energy Monitoring

The Future of Homes Is Smart https://youtu.be/dxeC41gVSQ4 Imagine walking into your house, saying “lights on”,…

3 weeks ago

How Smart Weather Stations Revolutionize Farming

Weather plays a pivotal role in farming, influencing everything from planting schedules to irrigation needs.…

3 weeks ago

How IoT is Revolutionizing Precision Farming for Smallholders

Introduction Imagine a world where farming decisions are guided not just by intuition but by…

3 weeks ago

AI-Powered Crop Harvesting: Benefits and Challenges

Introduction Imagine a world where robots and artificial intelligence (AI) handle the backbreaking work of…

3 weeks ago

AI Models for Predicting Drought Impact on Crop Yields

Introduction AI models for drought prediction, and made you ever wondered how farmers and researchers…

3 weeks ago

DIY IoT Hydroponic & Aquaculture Monitor with Arduino Nano, ESP-01, and Blynk

https://youtu.be/PpIlTJ0myoM Introduction: Why Bother Monitoring Water Anyway? IoT Aquaculture project If you’ve ever tried growing…

1 month ago

This website uses cookies.