blog

Soft Robot Use Viscous Liquids To Perform Intricate Actions

In the College of Engineering, electrical and computer engineering assistant professor Kirstin Petersen works. Her team developed a system of fluid-driven actuators that enable soft robots to achieve more complex motions. Their paper, “Harnessing Nonuniform Pressure Distributions in Soft Robotic Actuators,” was published Jan. 20 in Advanced Intelligent Systems.

soft robot

“Soft robots have a very simple structure, but can have much more flexible functionality than their rigid cousins.” “They’re sort of the ultimate embodied intelligent robot,” Petersen said. “Soft robots are sort of the ultimate embodied intelligent robot,” Petersen says.

soft robot

“Most soft robots these days are fluid-driven. In the past, most people have looked at how we could get extra bang for our bucks by embedding functionality into the robot material, like the elastomer. Instead, we asked ourselves how we could do more with less by utilizing how the fluid interacts with that material.”

Traditionally, a soft robot’s fluid-driven actuator—i.e., the part the moves, such as a limb—functions when evenly pressurized fluid flows through an elastomer bladder or bellow. They connected a series of bellows with slender tubes, running in a pair of parallel columns, all in a closed system. Tiny tubes induce viscosity, which causes the pressure to be distributed unevenly, bending the actuator. That would normally be a problem, but the team found a clever way to take advantage of it.

Matia developed a full descriptive model that could predict the actuator’s possible motions and anticipate how different input pressures, geometries, and tube and bellow configurations achieve them—all with a single fluid input. It can do so without the multiple inputs and complex feedback control that previous methods required, the researchers say.

“We detailed the full complement of methods by which you can design these actuators for future applications,” Petersen said. “We detailed the full complement of methods by which you can design these actuators for future applications,” she said.

Conclusion

Researchers at Cornell University’s College of Engineering have developed a system of fluid-driven actuators that enable soft robots to achieve more complex motions. The team’s paper, “Harnessing Nonuniform Pressure Distributions in Soft Robotic Actuators,” was published Jan. 20 in Advanced Intelligent Systems. “This is basically a whole new subfield of soft robotics,” researcher Angharad Petersen says.

Read More

smartechlabs

Recent Posts

One-Handed Gaming Setup for Parents: Configurations While Holding a Sleeping Child

Introduction: Can You Game With One Hand While Holding a Child? Have you ever stared…

2 days ago

Teaching Financial Literacy Through In-Game Economies: How Games Build Real-World Money Skills

Introduction: Can Games Really Teach Us About Money? Can a video game really play a…

2 days ago

The ASMR Gamer: Games with Satisfying Sensory Feedback

ASMR gaming is no longer a niche curiosity. For many players, certain games don’t just…

6 days ago

Building a Local Multiplayer Arcade on One PC

Should you really build a local multiplayer arcade on one PC? At some point, every…

1 week ago

The Ethical AI Auditor: Helping Small Businesses Audit Their AI Tools for Bias and Compliance.

Introduction: Why Small Businesses Can’t Ignore Ethical AI Anymore Let’s start with the question most…

1 week ago

Creating AI-Generated Asset Packs (Icons, Textures, Sound Effects) for Game Developers

Introduction: Why Everyone Is Suddenly Talking About AI Game Assets If you’ve spent even five…

1 week ago

This website uses cookies.